Draper touts new bioprocessing method as ‘next big advance in CAR T-cell treatment’

By Melissa Fassbender contact

- Last updated on GMT

Draper touts new bioprocessing method as ‘next big advance in CAR T-cell treatment’
Draper has designed a microfluidic transduction device (MTD) it claims will help CAR T-cell therapy developers lower costs, up efficiency – and potentially bring manufacturing to the patient’s bedside.

According to the not-for-profit research and development company, smarter cell therapy production will be the next big advance in CAR T-cell treatment.

When asked how the company’s new MTD device will bring this advance to fruition, Jenna Balestrini, a program manager of cell bioprocessing and biomedical solutions at Draper cited two primary advancements to the system:

First, Draper’s device greatly reduces the amount of vector required to achieve high levels of transduction​,” she told us. Viral vectors, the delivery vehicle of genomic materials into specific cells, can account for as much as 75% of a treatment’s cost, according to the company.

“Second, the device removes the expense of additional touch labor and reduces the potential for contamination associated with ‘open systems,’”​ Balestrini added.

The device can be integrated into existing lab automation systems for generating CAR T-cells. (Image: Draper)
The device can be integrated into existing lab automation systems for generating CAR T-cells. (Image: Draper)

The device is designed to connect to a customer’s T-cell separation and activation systems, to create a closed, modular, and scalable system, she explained.

We believe this should reduce the cost of manufacturing the therapy by a factor of two to four, and bring the manufacturing of the therapy to the cancer center rather than an offsite location, and potentially even the patient bedside​,” she added.

How does it work?

Draper’s microfluidic transduction device uses transmembrane fluid flow to concentrate and co-localize target cells with viral vectors, explained Ken Kotz, a senior member of the technical staff in Draper’s biomedical solutions group.

This closed microfluidic system effectively increases the vector concentration in the vicinity of the cells resulting in greatly improved transduction efficiency in a matter of minutes,”​ he told us.

Following transduction, cells are recovered from the device through controlled flow conditions leading to highly efficient recovery of intact, viable cells.”

Collaboration and licensing

David O'Dowd, associate director of biomedical solutions at Draper said the company’s vision is to collaborate with CAR-T therapy producers to customize the microfluidic transduction device.

To manufacture the device, O'Dowd said the company would partner with a medical device manufacturer, but could also produce the system itself.

The key is that the therapeutic collaborator will decide who manufactures the device​,” he said. “Draper is prepared to license the IP covering the device, on an exclusive or non-exclusive basis​.” 

Related news

Show more

Related products

show more

Nifty Biosimilar

Nifty Biosimilar

UGA Biopharma | 13-Mar-2018 | Research Study

Aflibercept (Zaltrap®) is a recombinant fusion protein with complex post-translational modifications. Therefore deep understanding of biosimilar development...

Featured eBook: Complex Protein Production

Featured eBook: Complex Protein Production

Catalent Pharma Solutions | 06-Mar-2018 | Technical / White Paper

Download the eBook written by Catalent experts to learn about innovative products and techniques for scale-up of complex biologics, get optimal cell culture...


Inline diafiltration enables continuous processing

Pall Life Sciences | 13-Feb-2018 | Application Note

The Cadence inline diafiltration (ILDF) device is designed for continuous processing, in-process buffer exchange or contaminant removal in various processes...

Related suppliers